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Abstract 

Heat capacity spectroscopy HCS and differential scanning calorimetry DSC results are compared for eight polymers 
(especially for polyisobutylene (PIB) and a random copolymer of n-butyl methacrylate with 8% styrene) and glycerol. A mean 
value of the parameter a is obtained as ü = 4.3 f 2, where a = ?/GTw,,,~~, with T the DSC heating rate, 6T the temperature 
dispersion from the DSC transformation interval, and w,,, the frequency of the imaginaq part of maximum heat capacity, 
extrapolated from HCS to DSC temperatures. The results are discussed with regard to the fluctuation dominante of molecular 
glass transitions, to the fluctuation dissipation theorem, and to the Second Law of Thermodynamics. The a value seems to be 
universal, not depending on the substance group and fragility. 0 1997 Elsevier Science B.V. 

Keywords: Differential scanning calorimetry (DSC); Fluctuation dissipation theorem (FDT); Glass transition; Heat capacity 
spectroscopy (HCS) 

1. Introduction 

At a given temperature T, the dynamic glass tem- 
perature as determined by heat capacity spectroscopy 
(HCS) [l] is characterized by the frequency w,, (in 
rad/s) of the CP(w) peak maximum. Ci(w, T) is the 
imaginary part of the dynamic or complex heat capa- 
city, usually determined by linear response in equili- 
brium. As deterrnined by differential scanning 
calorimetry (DSC) [2], however, the thermal glass 
temperature is characterized by a temperature pro- 
gram, e.g. by the heating rate ? (in K/min). This glass 
temperature can be determined by an equal-area con- 
struction from the DSC thermogram for heating, if the 
heating rate is equal to the preceding cooling rate with 
no annealing period in-between. The transition from 
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the non-equilibrium glass state to the equilibrium 
liquid state is influenced by structural relaxation [3]. 

Fig. 1 compares both methods for glycerol. Irre- 
spective of the experimental differences it seems that, 
after some horizontal shift to bridge over the gap 
between HCS and DSC glass temperatures, corre- 
sponding pairs (w,,,~~, T) can be determined, where 
the CL(T; wmax) curve from HCS coincides [4] with 
the C,(T; ?) curve from DSC if the latter is properly 
corrected (CP + CL) for structural relaxation. The 
corresponding relation between ? and w,, is the 
subject of this paper. 

Since it is difficult to apply HCS at low frequenties 
[5] (too long temperature wavelengths in the sample) 
and since DSC results at high 7 values are falsified by 
serieus heat transfer problems, it seems that the HCS- 
DSC temperature gap of the order of a few 10 K cannot 
easily be shortened. We are therefore confronted with 
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Fig. 1. Dynamic heat capacity results from HCS: Real and 
imaginaty parts of (PKQ,)* as a function of temperature at different 
constant frequenties v = w/2?r (upper part), compared with heat 
capacity from DSC as a function of temperature at different heating 
rates T after equal cooling rates with no annealing (lower part) for 
glycerol of 99.5% purity. K = heat conductivity, p =mass density. 
In al1 CG figures, the real part is on the top. 

non-trivial extrapolation problems to bridge over the 
gap. A way out seems to be [6] the use of temperature- 
modulated DSC, TMDSC [7], allowing fairly low 
frequenties for the Ci (T, w) determination. Unfortu- 
nately, the TMDSC advantages of no temperature gap, 
and the use of only one single apparatus with the same 
thermometers for both measurements, are at present 
partly lost by a seemingly complicated structural- 
relaxation effects on the low temperature C;(T) flank. 
This wil1 be discussed in a separate paper [8]. 

Despite the obviously better chances for TMDSC in 
the future, it seems to be useful to take the many HCS 

results from our laboratory [9] for a rough determina- 
tion of the desired {IJ,,, ) f} relation. The aim of this 
paper is to compare HCS and DSC for nine glass 
formers in three-substance groups: 

‘normal’ glass transitions (glycerol, natura1 rubber 
(NR), polyvinylacetate (PVAC), and a random 
copolymer of styrene and butadiene, SBR rubber), 
‘complex’ glass transitions (such as in polyiso- 
butylene (PIB) and bromobutyl rubber (BIIR)), 
where probably two glass transitions are in the 
main transition [ 101, and 
substances where the glass transition is near the 
cooperativity onset [ 111, here called ‘near-onset’ 
substances, such as three random copolymers of 
n-butyl methacrylate, P(nBMA-stat-S), with 2%, 
8% and 19% mol styrene. 

In the next section a theoretical background wil1 be 
described to show that there is an unsolved theoretical 
problem behind the {T, w,,,,~} relation. The ratio [ 121 

a = ii’/STumax, (1) 

where ST is a temperature differente related to the 
glass-transition interval, wil1 be defined as a basis for 
the discussion of the experimental results. We find an 
average value log,,a = 0.63 * 0.2 confirming Hen- 
sel’s TMDSC results a = 6 -t 1 for PVAC and a 
semicrystalline poly(ether etherketone) [6]. 

2. Theoretical 

This section is an attempt to describe the theoretical 
problem behind the a constant according to Eq. (1). 
The main idea is to find out how Nature itself makes 
‘calorimetry’, i.e. how much time is needed in the 
fluctuation formula [ 131 

kC, = As2 (2) 

for the time averaging of entropy fluctuation AS2 to 
establish a heat capacity CP; and k is the Boltzmann 
constant. 

Let US start with the linear material equation for 
entropy response, 

dS = 
t C,(t-ty J T 

i-(t’)dt’, 

-00 

(3) 
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where C,,(t - t’)/T is the entropy compliance and 
T(t’) the temperature program in the past t’ < t, 
?‘(t’) = dT/dt(t’). Using 

lx 

CP(w) = c; + .I bp(T)exp (-iwr)dt 

0 

= C;(w) - iCi(w), (4) 

we see that the relation between ? and w,,, is not 
monitored by a temperature interval as defined in 
Eq. (l), but by the temperature T itself. Such a reduc- 
tion wil1 be expressed by a tilde over a: 

Eq.(3)withwT%l+&-_T/Tw,,,=O(l). (5) 

This means that the heating rate should be reduced by 
the (glass) temperature to get a ratio 6 of order 1. From 
experience [6,12], we know that a heating rate of 10 
K/min corresponds to a frequency of only a few 
millihertz, e.g. w,,, Z 6 mrad/s. This would imply 
an 2 value of -0.1 for T = Tg = 300 K, obviously too 
smal1 for the Eq. (5) estimation of the simple linear 
response Eq. (3). 

Let US now analyze our ‘u’ problem with the aid of 
the fluctuation dissipation theorem FDT. We start from 
the enthalpic First Law fundamental form (i.e. from 
enthalpy H), 

dH = TdS + Vdp. (6) 

Considering an isobaric temperature disturbance, the 
FDT [ 141 in the frequency domain reads 

AS’(w) = kTJ;(w)/ma (74 

This equation can be interpreted as an equation for a 
natura1 experiment: it connects the linear response of 
the system (dynamic entropy compliance 
Jz = Jk - iJi), caused by an extemal disturbance, 
with intemal thermal fluctuations (entropy spectra1 
density AS2(w)) of the subsystem considered. In 
the linear regime the AS2 (w) function does not depend 
on the extemal disturbance, i.e. we have the same 
AS2 (w) function also in case of no disturbance. Using 

C;(w) = TJ; (w) 0) 

and the sum formula 
Jj 

AS2 (w)dw (8) 

we get 

AS2 = (2k/n) 7 Ci(w)dlnw = kC,. Pa) 
dJ=O 

Integration over the glass transition Ci peak only 
would give 

AS2 = kAC,,. (9b) 

The Y’ factor in Eq. (9a) comes from the definition 
used for the Fourier transformation between spectra1 
density y’(w) and correlation function y2(~), 

m 

yZ = 7r-’ .I drcos (w7)y2(+ (10) 

or, in other words, from the Kramers-Kronig disper- 
sion relations of any variable y. 

In this picture, the thermal glass transition for a 
cooling experiment is schematically shown in Fig. 2. 
Cooling shifts the glass-transition CP(w) peak to a 
lower frequency, and, somewhat simplified, at a cer- 
tain frequency w,,,, defined by the a and 6T values of 
Eq. (l), the time in the time averages of Eqs. (2),(9a) 
and (9b) becomes too short for contributing to the 
experimental C,, value: We observe the well-known CP 
step at Tg, AC,, because the hatched part in Ci(logw) 
is cancelled in Eq. (9b) by the freezing-in. 

A relation between f and wmax needs the reduction 
of T by a temperature or a temperature interval, named 
GTin Eq. (1). The description by the FDT suggests the 
use of temperature jhctuation for ST. As is wel1 

C,” (logw,T) 

t 

Fig. 2. Thermal glass transition for cooling, schematically 
presented as freezing-in of dynamic heat capacity below a 
frequency w,,, corresponding to a cooling rate ? according to 
Eq. (1). The hatched areas can no longer contribute to CP. 
Structural relaxation is neglected. 
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Fig. 3. Temperature fluctuation of a cooperativity region as a func- 
tion of time t, compared with three examples for heating rate f(t). 
For details see text. Case (b) is assumed to correspond to Eq. (1). 

known, the relative temperature fluctuation of milli- 
meter samples is of the order of lO_” K or smaller, 
beyond the scope of any discussion with Eq. (1). The 
main idea [ 12,141 is to use a smal1 subsystem for 
getting a larger 671, more precisely, to use the co- 
operativity region [15] of size 2. . .3 nm [16] as the 
representative subsystem for the description of 
dynamic glass transition, and the requirement that 
the microscopic description of the dynamics be domi- 
nated by such fluctuations [17]. 

The temperature fluctuation of the cooperativity 
region is depicted in Fig. 3. The dispersion of this 
subsystem fluctuation is denoted by 6T. The a problem 
is now a comparison of a heating (or cooling) rate with 
the fluctuation rate. Three abstract variants are shown: 
(a) The rate ? is too large, i.e. the time is too short for 
detecting the fluctuation; (b) is the transition case for 
Eq. (1); and (c) a variant in which there is no problem 
for time averaging in Eqs. (9a) and (9b) because of a 
sufficiently slow rate. Dominante of fluctuation gives 
the relation between the experimental time r..,p for 
establishing the time average in Eq. (9b) (case (b)) to 
the fluctuation interval 6T, 

r exp = 6T/i-. (11) 

From Eq. (l), we see that the a parameter reads 

Q- = l/(r,,p . fJJnl,x). (12) 

The a parameter thus corresponds to a rate: How fast 
can a fluctuating oscillation (w,,,) be realized (ther- 
modynamically be measured) by a drift i’ in the 
fluctuation dispersion interval ST. This interpretation 
suggests a universal value for a. 

As far as we know there is as yet no theoretical 
approach on how this ratio can be calculated. As 

already mentioned, a = 6 or somewhat smaller, but 
of order one. 

It should be mentioned that the Narayanaswamy- 
Moynihan-Hodge formulas for structural relaxation 
[ 181 are also burdened with this real time problem. It is 
wel1 known that these formulas contain four adjustable 
parameters, 

{es, B, x, P> (13) 

where, in modern terrns, B stands for fragility, x for 
non-linearity, p for non-exponentiality, and rs for a 
‘glass time’. The determination of r.. is connected to 
the a value of Eq. (1). Practically, it is solved by a 
horizontal shift of the calculated to the measured 

C,(T) curves. 

3. Experimental 

The heat capacity spectrometer (also HCS) was 
built in our laboratory [9,19,20]. It is an improved 
version, as compared to Nagel’s 3w spectrometer [ 11, 
with regard to temperature stability, clamping of 
polymer samples, and electronic signal detection. 
Polymers with rather smal1 Ac,/~p values of several 
percent can now be analyzed. The details are described 
in a separate paper of this issue [ 191. The 6T values are 
determined as dispersions from a Gauss fit of C;(T) 
curves at constant frequency [ 12,171. 

For the heating or cooling rate experiments, a 
Perkin-Elmer DSC was used, the sample mass being 
a few milligrams. Tg was determined from an equal- 
area construction for both heating and cooling ther- 
mograms (no annealing in-between). The heat transfer 
problems were partly eliminated by taking the average 
between heating and cooling. An exact comparison 
between HCS and DSC would require the calculation 
of an equilibrium Ci response from the thermograms 
by using structural relaxation corrections. This was 
approximated by two steps. First, the ST values were 
estimated from 

6T = AThl2.5 from heating (14a) 

6T = AT,/4.0 from cooling, (14b) 
where AT is the temperature interval between 16% 
and 84% of the total AC, step. The numbers 2.5 and 
4.0 were estimated from the more precise analysis of 
Ref. [21]. Second, it was assumed that the CP(w) 
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maximum corresponds to the equal area Ts, i.e. that 
the Ci(logw) peak is symmetrical. The log symbol in 
this paper always means log,,. 

The uncertainties of a values, obtained from 
Eq. (l), determined by this HCS-DSC comparison 
are considerable. The main sources are 

1. 

2. 

3. 

4. 
5. 

Mutual uncertainty of the sample temperature 
scale in the two different devices (up to 0.6 K). 
Uncertainty of STvalues (up to 20% for HCS, up to 
50% for DSC). 
Uncertainty from WLF extrapolation (see Fig. 9, 
later) for bridging over the gap between DSC 
and HCS temperatures (strongly depending 
on the substances, ranging from ??0.3 to kl.2 
for log a). 
Uncertainty of the TE - w,,, equivalente. 
Uncertainty of the a fitting by mutual shifting of 
the log? scale for DSC against the logwmaX scale 
for HCS curves (up to 50%). 

The total log a uncertainty was estimated indivi- 
dually for each substance: it was ranged between 
Alogu = ~tO.5. . . k 1.5. This means that the uncer- 
tainty of an individual a value is at least a factor of 
three. 

The WLF extrapolation was either based on the 
curvature of the HCS trace in an Arrhenius diagram 
(logw,,,, vs. l/T), or on parallel dielectric experi- 
ments adapted [20] to the HCS values. 

4. Results 

Fig. 4 shows the HCS CP (T, w) values as a function 
of logw for glycerol (group (i) substance). The tem- 
perature curves were compared to the DSC C,(T, ?) 
function in Fig. 1. The Ci(logw) curves are rather 
symmetrical, and the extrapolation gap between DSC 
and HCS temperatures is ca. 15 K. The HCS Ci (T, w) 
functions for the group (ii) substance PIB are shown in 
Fig. 5. The corresponding T curves are compared to 
the DSC results in Fig. 6. The Ci(logw) curves for 
PIB are not symmetrical, they indicate a smaller slope 
of the low frequency flank which is not often observed 
in glass formers. The extrapolation gap is ca. 20 K. 
The HCS Ci(T, w) results for the group (iii) (near- 
onset) substance P(nBMA-stat-S) with 8% mol S are 
presented in Fig. 7, their comparison with DSC ther- 

17” “““1 7 ,““‘l “‘1 

A A glycerol 99.5 %‘ 0 

A 
0 ?? A 

?? n A 
?? 0 

0 
A -60.5 “C 
0 -66.6 “C & 

0 -69.6 “C i 

w / rad s-’ 

Fig. 4. HCS results for glycerol 99.5% as a function of log 
frequency for several temperatures. The dotted lines are symme- 
trical Havriliak-Negami fïts [25] 
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Fig. 5. HCS results for polyisobutylene (PIB) as a function of log 
frequency for different temperatures. Observe the asymmetry of the 

, 

imaginary part 

mograms is in Fig. 8. Ci(log w) seems to be symme- 
trical, and the extrapolation gap is ca. 20 K. 

The comparison method for the T/wmax relation, i.e. 
the log? - log w,,, relation, is schematically illu- 
strated in Fig. 9. The first step is to get a WLF curve 
from either dielectric experiments adapted to HCS 
(glycerol) or from HCS itself (PIB, copolymer). This 
curve is drawn into an Arrhenius diagram logw VS 
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Fig. 6. HCS resuhs for PIB as a function of temperature for 
different frequenties (upper part) as compared with two DSC 
cooling-heating runs at 10 K/min (lower part). The fits of the 
imaginary part are Gaussian functions for determining the 
dispersion 6T. 

l/T. Then the DSC log? vs. l/T, data are put in the 
same plot. The 1ogT axis is vertically shifted as long as 
the DSC data set it best fitted to the HCS original WLF 
curve. The ordinate differente log ? - log w,,, then 
gives the ?/w,, ratio. The results of this procedure 
are presented in the upper parts of Figs. 10-12. The 
lower parts show, as a control, how the ST values from 
HCS suit to the smaller 6T values from DSC. 

The T/w,,, uncertainty is particularly large in the 
near-onset group (iii) substance, because of two rea- 
sons: The accessible equilibrium glass-transition trace 
in the Arrhenius diagram is short, and in the so-called 
c@? splitting region [l 11 the E” and ci maximum traces 
depend on the evaluation method: We obtain different 
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Fig. 7. HCS results for the random copolymer P(nBMA-stat-S) 
witb 8% mole S (nBMA = n - butyl methacrylate, S = styrene). 
Upper part: as a function of temperature. Lower part: as a function 
of frequency. The lower part curves are symmetrical Havriliak- 
Negami fits. 

traces for isothermal and isochronal maxima. Unfor- 
tunately, the HCS frequency window is too smal1 to 
get many reliable CP isotherms. 

The results for al1 the nine substances investigated 
are listed in Table 1. 

5. Discussion 

The Table 1 log a values, according to Eq. (1) (with 
GTfrom DSC, of course), and the log ü, values accord- 



2.4 

2.4 

2.2 1 I DSC 

2.0 

-Li 
‘m 1.8 
e 
. 
0” 1.6 

1.4 

,’ 1 <’ - +lO IZJmin 
,’ 

,*’ 
--.-- - lOK/min 

1.2 I 

0 40 80 120 

E. Donth et al./Thennochimica Acts 304/305 (1997) 239-249 245 

-m-2Hz 
A-bHz 
-.- 20 Hz 
-v-6OHz 
+204Hz 
-o- 600 Hz 

T/“C 

Fig. 8. Real part of HCS results for the 8% copolymer (same data 
as in Fig. 7, upper part), now as compared with a DSC cooling- 
heating run. 

ing to Eq. (5), are presented in Fig. 13. Selecting the 
isochronal HCS 6T20 values for v = 20 Hz as the 
abscissa, the substances are assorted into the groups 
(i) = normal, (ii) = complex, and (iii) = near co- 
operativity-onset glass transitions. The average log 
a and logü values are calculated with regard to the 
individual uncertainties: 

loga = 0.63 f 0.5, (15) 

and 

1oga = -1.4 f0.5, (16) 

where the uncertainty is for the individual values 
(factor 3 for a). T’he uncertainty of the averages is 
estimated as about j~O.2, this means a factor of 1.6. 

- 

log w 
l 

Fig. 9. Schematic diagram for determination of the a parameter in 
Eq. (1) by vertical variation of DSC results (shifting of log ?). The 
WLF curve is from HCS (or dielectric experiments adapted to 
HCS), and the Eq. (1) comparison is made for DSC at i- = 10 
K/min and the corresponding DSC 6T value. 
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Fig. 10. Actual fit of DSC to HCS for the a determination in 99.5% 
glycerol. Upper part: Arrhenius diagram. Lower part: Temperature 
dispersion 6T from HCS and DSC as a function of temperature. The 
consistency of both 6T series is satisfactory. 
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Fig. ll. Determination of a for PIB (details see Fig. 10). The ( ??) 
and (0) symbols are from two independent HCS experiments. 

Therefore, using Eq. (12), we obtained an average 
value 

á = 4.3 & 2 = l/(~expW,ax). (17) 

This value is consistent with the Hensel a = 6 * 1 
value in the frame of uncertainties. The ü value 
obtained is of order one, whereas the average g value 
is -0.04, much smaller than one. This favors the 
reduction of ? by 6T, and does not favor the reduction 

by Ta. 
Nevertheless, the ü value obtained corresponds to a 

relatively short experimental time r,,r when compared 
to w&, and ~,,r z w;.&/4. Compared to the time for 
one period, rP = l/u,,, = 2r/wmax, we have 

TexplTp = 1/(27ra) z 0.04. (18) 

??UHCS 
0 DSC 

0 I I 1 I 
2.9 3.0 3.1 3.2 3.3 3.4 

lOOOK/T 

Fig. 12. Detertnination of a for the 8% copolymer (for details see 
Fig. 10). The (m) and (0) symbols are from two independent HCS 
experiment% The middle WLF fit is from points of both HCS 
experiments with T, from dielectrics (see footnote (b) below 
Table 1). the broken lines are the WLF fïts for each data set, 
separately. The numbers are the different log a values obtained. 
The error bar indicates the large total uncertainty of the 
construction for the near-onset substances. 

This means that the time needed for establishing a heat 
capacity from entropy fluctuations is only 4% of a 
mean fluctuation period in case of glass transitions. 
The reduction with Tg would give a value 
1/(27rz) zz 4, i.e. four periods would be needed for 
the establishment. This seems too large. 

The obtained a ratios seem to be universal, not 
depending on the substance group and fragility F 
(Table 1). 

Let US close the discussion with a few genera1 
remarks about the relationship between dynamic heat 
capacity CP and the Second Law. First, let US define 
CP = ti/?, with b the heat input per time to the 
system, and S = JC,d In T with this CP, then the 
HCS of the stationary case corresponds to a thermo- 
dynamic cycle. This cycle is irreversible if $dS > 0. 
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Fig. 13. Values of log a from Eq. (1) (m,n) and log ä from 
Eq. (5) (0) for the nine glass formers as a function of the HCS 
temperature dispersion at 20 Hz, 6Tzo. This parameter assorts the 
three substance groups: normal (glycerol, PVAC, SBR, NR), 
complex (PIB, BRR), and near-onset (2%S, 8%S, 19%S copoly- 
mer). The average lines are calculated by weighting with the 
different uncertainties (loga = 0.63). 

From linear response, we get [22] 

ASi,, - 
f 

dS = n(AT)2C;(~, T)/T2 

> Ofor Ci > 0, (19) 

where ATis the temperature amplitude of the periodic 
í”(r) program. The Ci > 0 relation thus follows from 
the Second Law, although there is no ‘10s~’ or ‘dis- 
sipation’ connected with a bare heat input. The mean 
entropy production is obtained from Eq. (19), 

krev = LJ(AT)~CP’/~T’. (20) 

Second, a DSC cooling-heating cycle also corre- 
sponds to a thermodynamic cycle. In equilibrium, 
far from the glass-transition zone (CP z 0), we get 
ASirre, = 0, but including the thermal glass transition 
we obtain [23] 

f 
C,dT = 0 (First Law), (21) 

and 

ASirre, = 
f 

$ dT > 0 (Second Law). 

(22) 

An order-of-magnitude estimation gives 

ASirrev z ACP6T2/T,2 (23) 

with AC, the CP step height and ST the half transfor- 
mation interval at Tg, about corresponding to the 
temperature fluctuation of the relevant subsystem. 
Third, using the FDT, Eqs. (7a) and (7b), i.e. 

AS2@) = kC;(w)/rrw, (24) 

the C;(w) 2 0 relation can be reasoned seemingly 
outside (!) the Second Law. As is wel1 known (Ref. 
[24], Chintchine theorem), AS2(u) 2 0 follows 
directly from the properties of the correlation function 
AS2(r), when AS2(u) is defined by the Fourier 
transformation of a correlation function, Eq. (lO), 
with y = S. Hence, Ay2(u) 2 0 is a purely mathema- 
tical property of any spectra1 density of a stationary 
stochastic process; here y = S is the entropy fluctua- 
tion of the relevant subsystem. One can speculate, in 
the frame of local equilibrium and linear response, that 
the Second Law is an implication of the fluctuation 
dissipation theorem that is here discussed as the 
equation of a natura1 thermodynamic experiment. 

Summarizing the genera1 remarks, CP (w, T) is inter- 
preted as dynamic or complex heat capacity of linear 
response, corresponding to the dynamic entropy com- 
pliance, having a real and a positive imaginary (no 
10s~) part, and being a property of a smal1 isobaric 
thermodynamic TS cycle at a temperature T (pressure 
p, . .) with a frequency w. 

6. Conclusions 

We have demonstrated how the glass-transition 
frequency w,, of a heat-capacity spectroscopy 
HCS experiment can actually be compared with a 
heating (or cooling) rate ? of a DSC experiment for 
Tg. The uncertainty of the comparison is relatively 
large, mainly caused by the large gap between the 
temperatures, where a C;(w) maximum can be 
detected in our HCS device and the glass temperatures 
accessible by standard DSC. It seems that in the future 
TMDSC would be more appropriate for this issue. The 
average value obtained for the a ratio, 
ä = ii’/STw,,, = 4.3 f 2 (relating f to the half of 
the transformation interval ??7), is in accordance to the 
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fitst TMDSC results obtained by Schick’s group in 
Rostock. This ü value seems to be universal. From 
dominante of fluctuation for molecular glass transi- 
tions, we conclude that a reduction of ? by ST (instead 
by Tg itself) is reasonable. Our ü value means that a 
heating/cooling rate of 10 K/min corresponds to a 
frequency of 2 mHz for typical ST = 3 K values, and 
to 1 mHz for ST = 6 K. 
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